Design of Fixed-Order Robust Controllers via Nonsmooth Optimization

S. Gumussoy^{*} M. Millstone[†] M. L. Overton[†]

^{*}The MathWorks Inc.

[†]Courant Institute of Mathematical Sciences, New York University

Problem Definition

Problem Definition

Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks \checkmark The state-space equations of a generalized plant G are

$$\dot{x}(t) = Ax(t) + B_1w(t) + B_2u(t)$$

$$z(t) = C_1x(t) + D_{11}w(t) + D_{12}u(t)$$

$$y(t) = C_2x(t) + D_{21}w(t) + D_{22}u(t)$$

and the state-space realization for the controller \boldsymbol{K} is

$$\dot{x}_K(t) = A_K x_K(t) + B_K y(t)$$
$$u(t) = C_K x_K(t) + D_K y(t)$$

where $A \in \mathcal{R}^{n \times n}$, and $A_K \in \mathcal{R}^{n_K \times n_K}$. The controller order n_K is a design parameter.

Problem Definition (Cont'd)

Problem Definition

Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks Let's connect the generalized plant and the controller,

$$\dot{x}_{cl}(t) = A_{cl}x_{cl}(t) + B_{cl}w(t)$$
$$z(t) = C_{cl}x_{cl}(t) + D_{cl}w(t)$$

The closed-loop matrices contain the controller matrices as design parameters

Problem Definition (Cont'd)

Problem Definition

Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

✓ Design constraints: The controller is,

- 1) fixed order n_K
- 2) stabilizing closed-loop, $\alpha(A_{cl}) < 0$
- 3) minimizing H-infinity norm from w to z $||T_{zw}||_{\infty} = \sup_{w \in \mathbb{R}} \sigma(C_{cl}(jwI - A_{cl})^{-1}B_{cl} + D_{cl})$
- 4) itself stable, $\alpha(A_K) < 0$

Here α denotes spectral abscissa, max of real parts of eigenvalues

Problem Definition (Cont'd)

Problem Definition

Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

✓ Design constraints: The controller is,

- 1) fixed order n_K
- 2) stabilizing closed-loop, $\alpha(A_{cl}) < 0$
- 3) minimizing H-infinity norm from w to z $||T_{zw}||_{\infty} = \sup_{w \in \mathbb{R}} \sigma(C_{cl}(jwI - A_{cl})^{-1}B_{cl} + D_{cl})$
- 4) itself stable, $\alpha(A_K) < 0$

Here α denotes spectral abscissa, max of real parts of eigenvalues

✓ We would like to solve the following problems

Fixed order H-infinity controller design (1-3)Stable fixed order H-infinity controller design (1-4)

Problem Definition

Why's ?

Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

✓ Why are fixed-order controllers important?

Problem Definition

Why's ?

- ✓ Why are fixed-order controllers important?
- ✓ Why are robust (H-infinity) controllers important?

Problem Definition

Why's ?

- ✓ Why are fixed-order controllers important?
- ✓ Why are robust (H-infinity) controllers important?
- ✓ Why are stable controllers important?

Problem Definition

Why's ?

- ✓ Why are fixed-order controllers important?
- ✓ Why are robust (H-infinity) controllers important?
- ✓ Why are stable controllers important?
- ✓ What is the intuition?
 - X Optimal H-infinity controller design is solvable by standard methods if the controller order is equal to the plant order (impractical in most cases),

Problem Definition

Why's ?

- ✓ Why are fixed-order controllers important?
- ✓ Why are robust (H-infinity) controllers important?
- ✓ Why are stable controllers important?
- ✓ What is the intuition?
 - X Optimal H-infinity controller design is solvable by standard methods if the controller order is equal to the plant order (impractical in most cases),
 - X There is no known method for optimal H-infinity controller design if the controller order is less than plant order,

Problem Definition

Why's ?

- ✓ Why are fixed-order controllers important?
- ✓ Why are robust (H-infinity) controllers important?
- ✓ Why are stable controllers important?
- ✓ What is the intuition?
 - X Optimal H-infinity controller design is solvable by standard methods if the controller order is equal to the plant order (impractical in most cases),
 - ✗ There is no known method for optimal H-infinity controller design if the controller order is less than plant order,
 - X Low order and stable controller requirements are often conflicting

Optimization Problem

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable

Hinf Fixed

Concluding Remarks

✓ HIFOO uses two phases: stabilization and performance optimization.

***** stabilization phase: minimize $\max(\alpha(A_{CL}, \epsilon \alpha(A_K)))$ where $\epsilon > 0$, quitting when stabilization is achieved

X performance phase: look for a local minimizer of

 $f(K) = \begin{cases} \infty \text{ if } \max(\alpha(A_{CL}), \alpha(A_K)) \ge 0\\ \max(\|T_{zw}\|_{\infty}, \epsilon \|K\|_{\infty}) \text{ otherwise,} \end{cases}$

where $||K||_{\infty} = \sup_{w \in \mathbb{R}} \sigma(C_K(jwI - A_K)^{-1}B_K + D_K).$

Optimization Method

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

✓ HIFOO implements a hybrid algorithm for nonsmooth, nonconvex optimization, based on the following elements:

- ✗ a quasi-Newton algorithm (BFGS) provides a fast way to approximate a local minimizer;
- ✗ a local bundle method attempts to verify local optimality for the best point found by BFGS, and if this does not succeed,
- ✗ gradient sampling attempts to refine the approximation of the local minimizer, returning a rough optimality measure.

✔ HIFOO uses randomized starting points,

✓ HIFOO accepts an option to control the running time

Optimization Method

✓ More information on optimization and HIFOO

- ✗ J. V. Burke, A. S. Lewis and M. L. Overton, "A robust gradient sampling algorithm for nonsmooth nonconvex optimization," *SIAM Journal on Optimization*, vol.15, pp. 751−779, 2005.
- ✗ J. V. Burke and M. L. Overton, "Variational Analysis of Non-Lipschitz Spectral Functions," *Mathematical Programming*, vol.90, pp. 317-352, 2001.
- ✗ M. Millstone, "HIFOO 1.5: Structured control of linear systems with a non-trivial feedthrough", M.S. thesis, Courant Institute of Mathematical Sciences, New York University, 2006.
- http://www.cs.nyu.edu/overton/software/hifoo/

Benchmarking

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

- Benchmark results for Fixed-order H-infinity controller design
 - ✗ 13 benchmark plants from industrial and academic problems
 - ✗ Results are compared with those published in the literature
 - Compleib library, Enns' Example, HIMAT Example and more...

Benchmarking - Comparison on Compleib Library

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

✔ HIFOO is effective for high order plants

	$(\ \mathcal{F}_l(G,K)\ _{\infty}, n_K)$					
		Nonsmooth Hinf				
Plant	Full-Order	[Apkarian, Noll TAC06]	HIFOO			
AC8	(1.892, 9)	(2.005, 0)	(2.005, 0)			
HE1	(0.0737, 4)	(0.154, 0)	(0.154, 0)			
REA2	(1.135, 4)	$(1.155^\dagger,0)$	(1.149, 0)			
AC 10	(3.23, 55)	(13.11, 0)	$(12.83^*, 0)$			
AC 10	(3.23,55)	(10.21, 1)	$(10.338^*, 1)$			
BDT2	(0.234, 82)	(0.8364, 0)	(0.6515, 0)			
HF1	(0.447, 130)	(0.447, 0)	(0.447, 0)			
CM4	(0.816, 240)	(0.816, 0)	(0.816, 0)			

Benchmarking - Comparison with Multidirectional Search Method[Apkarian, Noll 2006]

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

- ✔ HIFOO has slightly better performance
- ✔ HIFOO has good performance for numerically ill-posed problems

	$(\ \mathcal{F}_l(G,K)\ _{\infty},n_K)$					
Plant	Full-Order	Multidirectional	HIFOO			
VTOL CR PA	(0.0737, 4) (1.135, 4) numerically ill-posed	$(0.157, 0)^{\dagger}$ (1.183, 0) $(1.76e{-4}, 0)$	(0.154, 0) (1.168, 0) $(1.18e{-4}, 0)$			

Benchmarking - Comparison on Enns' Example

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed

Concluding Remarks

\checkmark The order of the plant is 8

✓ The achievable minimum H-infinity closed-loop norm using a full-order controller is 1.1272

	$\ \mathcal{F}_l(G,K)\ _{\infty}$							
n_K	Zhou	Kavranoglu	Wang	Varga	HIFOO			
7 6	$1.1960 \\ 1.1960$	$1.1957 \\ 1.1971$	$1.198 \\ 1.196$	1.1950 1.1960	$1.1655 \\ 1.1447$			
$\begin{bmatrix} 5\\ 4\\ 3 \end{bmatrix}$	$\begin{array}{c} 1.1950 \\ 1.1950 \\ 1.4880 \end{array}$	$\begin{array}{c} 1.1970 \\ 1.1991 \\ 1.8801 \end{array}$	$1.204 \\ 1.197 \\ 3.906$	1.1960 1.1960 2.7580	$\begin{array}{c} 1.1508 \\ 1.1923 \\ 1.1921 \end{array}$			
2 1	$\begin{array}{c} 1.4150 \\ 2.4670 \end{array}$	$\frac{1.9681}{73.2860}$	1.954 Unstable	1.4130 Unstable	$\frac{1.2438}{1.4256}$			

Benchmarking - Comparison on HIMAT Example

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

	$\ \mathcal{F}_l(G,K)\ _{\infty}$					
n_K	Goddard	Wang	HIFOO			
16	0.98	0.97	1.01			
15	—	0.97	1.01			
14	—	0.97	1.01			
13	0.98	0.98	1.01			
12	_	0.98	1.01			
11	_	0.99	1.02			
10	2.02	1.27	1.03			
7	1.27	1.22	1.06			
6		1.22	1.07			

- The standard benchmark example for reducedorder controller design
- ✓ The order of the plant is 20
- ✓ The achievable minimum H-infinity closed-loop norm by a full-order controller is 0.9708

Remarks

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

- Low order controllers may achieve closed-loop H-infinity norm close to the optimal value achievable by a full-order controller
- ✓ HIFOO has good performance on high-order plants
- ✓ HIFOO performs well in numerically ill-posed problems
- ✓ HIFOO is a promising alternative method to controller reduction methods

Benchmarking

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed

Concluding Remarks

Benchmark results for Stable fixed order H-infinity controller design

- ✗ 17 benchmark plants from industrial and academic problems
- ✗ Performances is compared to results published in the literature
- ✗ Choi-Chung's Example, Four Disk System, Compleib library and more...

Benchmarking - Comparison on Choi-Chung's Example

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed

Concluding Remarks

n_K	γ_{n_K}	Methods	Controller Stability
16	25.430	Choi	Stable
12	21.787	Chou	Stable
8	43.167	Choi	Stable
8	37.551	Zeren	Stable
8	32.557	Gumussoy	Stable
8	24.790	Choi	Stable
4	12.015	full	Unstable
4	16.612	HIFOO	Stable
3	16.486	HIFOO	Stable
2	20.797	HIFOO	Stable
1	62.638	HIFOO	Stable

Benchmarking - Comparison on Four Disk System, $\beta=10^{-1}$

Problem Definition
Why's ?
Optimization
Problem
Benchmarks-Hinf
Fixed
Benchmarks-stable
Hinf Fixed
Hinf Fixed
Hinf Fixed

n_K	γ_{n_K}	Methods	Controller Stability	
24	0.237	Campos-Delgado	Stable	
16	0.245	Zeren	Stable	
16	0.241	Gumussoy	Stable	
8	0.232	full	Unstable	
8	0.235	HIFOO	Stable	
7	0.236	HIFOO	Stable	
6	0.236	HIFOO	Stable	
5	0.235	HIFOO	Stable	
4	0.274	HIFOO	Stable	
3	0.307	HIFOO	Stable	
2	0.347	HIFOO	Stable	
1	0.649	HIFOO	Stable	

Benchmarking - Compleib Library, High-Order Systems

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed

Concluding Remarks

AC 10		BDT2		HF1		CM4	
n_K	γ_{n_K}	n_K	γ_{n_K}	n_K	γ_{n_K}	n_K	γ_{n_K}
55	0.633	82	0.234	130	0.447	240	0.816
8	8.984	8	0.531	8	0.447	8	0.824
7	9.003	7	0.542	7	0.447	7	0.819
6	9.376	6	0.534	6	0.447	6	0.818
5	9.570	5	0.559	5	0.447	5	0.817
4	9.869	4	0.604	4	0.447	4	0.818
3	9.869	3	0.578	3	0.447	3	0.817
2	9.869	2	0.576	2	0.447	2	0.817
1	10.863	1	0.643	1	0.447	1	0.817

Remarks

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed

Concluding Remarks

- ✔ HIFOO is often able to find stable controllers with lower order than given in the literature
- Since existing methods obtain controllers with order equal to or greater than the plant order, they are impractical in practice
- ✔ HIFOO finds stable low-order H-infinity controllers for various problems in the literature
- Existing stable H-infinity controller methods are conservative and HIFOO shows that there is a margin for improvement

Concluding Remarks

Problem Definition Why's ? Optimization Problem Benchmarks-Hinf Fixed Benchmarks-stable Hinf Fixed Concluding Remarks

- ✓ HIFOO solves difficult problems in control theory and the results are not conservative compared to other existing methods in the literature
- ✓ The performance of HIFOO is very good for high order plants
- ✔ Detailed survey on HIFOO and control problems
 - ✗ S. Gumussoy and M. L. Overton, "Fixed-Order H-infinity Controller Design via HIFOO, a Specialized Nonsmooth Optimization Package," ACC, Seattle, 2008.
 - ✗ S. Gumussoy, M. Millstone and M. L. Overton, "H[∞] Strong Stabilization via HIFOO, a Package for Fixed-Order Controller Design," submitted to CDC, Cancun, 2008.
 - http://www.cs.nyu.edu/overton/software/hifoo/