Computing H-infinity Norm of Time-Delay Systems

Suat Gumussoy
Department of Computer Science
K. U. Leuven
Celestijnenlaan 200A 3001 Heverlee
Belgium
Email: suat.gumussoy@cs.kuleuven.be

Wim Michiels
Department of Computer Science
K. U. Leuven
Celestijnenlaan 200A 3001 Heverlee
Belgium

Email: wim.michiels@cs.kuleuven.be

1 Abstract

We consider the computation of the \mathscr{H}_{∞} norm of the stable transfer function G,

$$
\begin{equation*}
G(j \omega)=C\left(j \omega I-A_{0}-\sum_{i=1}^{m} A_{i} e^{-j \omega \tau_{i}}\right)^{-1} B+D e^{-j \omega \tau_{0}} \tag{1}
\end{equation*}
$$

where the system matrices are $\left(A_{i}, B, C, D\right), i=0, \ldots, m$ are real-valued and the time delays, $\left(\tau_{0}, \ldots, \tau_{m}\right)$, are real numbers.

The following theorem is used to compute the \mathscr{H}_{∞} norm of a transfer function in the finite dimensional case.

Theorem 1.1 [1] Let $\xi>0$ be such that the matrix $R=\xi^{2} I-D^{T} D$ is non-singular. For $\omega \geq 0$, the matrix $G_{o}(j \omega)=C(j \omega I-A)^{-1} B+D$ has a singular value equal to ξ if and only if $\lambda=j \omega$ is an eigenvalue of the Hamiltonian matrix

$$
H_{\xi}=\left[\begin{array}{cc}
A+B R^{-1} D^{T} C & B R^{-1} B^{T} \\
-C^{T}\left(I+D R^{-1} D^{T}\right) C & -\left(A+B R^{-1} D^{T} C\right)
\end{array}\right]
$$

Hence the \mathscr{H}_{∞} norm of G satisfies

$$
\begin{align*}
\left\|G_{o}\right\|_{\infty}= & \sup \left\{\xi>0 \mid H_{\xi}\right. \text { has an eigenvalue } \\
& \text { on the imaginary axis }\} . \tag{2}
\end{align*}
$$

This relation lays the basis of the well-established level set methods for computing \mathscr{H}_{∞} norm of finite dimensional systems (see, e.g. [2], for a quadratically converging algorithm).

In this talk, we extend the computation of \mathscr{H}_{∞} norm to the time-delay systems with the transfer function representation (1). The relation between the singular value of the transfer function and the corresponding Hamiltonian matrix remains valid. More precisely, let $\xi>0$ be such that the matrix

$$
D_{\xi}:=D^{T} D-\xi^{2} I
$$

is non-singular. For $\omega \geq 0$, the matrix $G(j \omega)$ has a singular value equal to ξ if and only if $\lambda=j \omega$ is a solution of the equation

$$
\begin{equation*}
\operatorname{det} H_{\xi}(\lambda)=0 \tag{3}
\end{equation*}
$$

where

$$
\begin{aligned}
H_{\xi}(\lambda):=\lambda I-M_{0} & -\sum_{i=1}^{m}\left(M_{i} e^{-\lambda \tau_{i}}+M_{-i} e^{\lambda \tau_{i}}\right) \\
& -\left(N_{1} e^{-\lambda \tau_{0}}+N_{-1} e^{\lambda \tau_{0}}\right)
\end{aligned}
$$

and $M_{0}, N_{1}, N_{-1}, M_{i}, M_{-i} i=1, \ldots, m$ depends on ξ and the system matrices in (1).

We show that the nonlinear eigenvalue problem (3) is equivalent to a linear eigenvalue problem of the infinite dimensional Hamiltonian operator \mathscr{L}_{ξ} on $X:=\mathscr{C}\left(\left[-\tau_{\max }, \tau_{\max }\right], \mathbb{C}^{2 n}\right)$ which is defined by

$$
\begin{aligned}
& \mathscr{D}\left(\mathscr{L}_{\xi}\right)=\left\{\phi \in X: \phi^{\prime} \in X, \phi^{\prime}(0)=M_{0} \phi(0)+\right. \\
& \left.\quad \sum_{i=1}^{m}\left(M_{i} \phi\left(-\tau_{i}\right)+M_{-i} \phi\left(\tau_{i}\right)\right)+N_{1} \phi\left(-\tau_{0}\right)+N_{-1} \phi\left(\tau_{0}\right)\right\}, \\
& \mathscr{L}_{\xi} \phi=\phi^{\prime}
\end{aligned}
$$

Our approach to compute $\|G\|_{\infty}$ consists of two steps. In the first step inspired by (2), we compute using the method presented in [2],
$\max \left\{\xi>0 \mid \mathscr{L}_{\xi}^{N}\right.$ has an eigenvalue on the imaginary axis $\}$
where \mathscr{L}_{ξ}^{N} is a matrix approximating \mathscr{L}_{ξ}. This problem can be interpreted as computing the \mathscr{H}_{∞} norm of an approximation of G under mild conditions.

In the second step, the approximated results are corrected using Newton iteration on a set of equations which are obtained from the nonlinear eigenvalue problem (3) and characterize the peaks in the singular value plot.

References

[1] S. Boyd, K. Balakrishnan, and P. Kabamba, "A bisection method for computing the \mathscr{H}_{∞} of a transfer matrix and related problems," Math Control Signals and Systems, 2(3), pp. 207-219, 1989.
[2] O. Bruinsma, and M. Steinbuch, "A fast algorithm to compute the \mathscr{H}_{∞} norm of a transfer function matrix," Systems and Control Letters, vol. 14, pp. 287-293, 1990.

