Computing H-infinity Norm of Time-Delay Systems

Suat Gumussoy Department of Computer Science K. U. Leuven Celestijnenlaan 200A 3001 Heverlee Belgium Email: suat.gumussoy@cs.kuleuven.be

1 Abstract

We consider the computation of the \mathscr{H}_{∞} norm of the stable transfer function *G*,

$$G(j\omega) = C\left(j\omega I - A_0 - \sum_{i=1}^m A_i e^{-j\omega\tau_i}\right)^{-1} B + De^{-j\omega\tau_0}$$
(1)

where the system matrices are (A_i, B, C, D) , i = 0, ..., m are real-valued and the time delays, $(\tau_0, ..., \tau_m)$, are real numbers.

The following theorem is used to compute the \mathscr{H}_{∞} norm of a transfer function in the finite dimensional case.

Theorem 1.1 [1] Let $\xi > 0$ be such that the matrix $R = \xi^2 I - D^T D$ is non-singular. For $\omega \ge 0$, the matrix $G_o(j\omega) = C(j\omega I - A)^{-1}B + D$ has a singular value equal to ξ if and only if $\lambda = j\omega$ is an eigenvalue of the Hamiltonian matrix

$$H_{\xi} = \left[\begin{array}{cc} A + BR^{-1}D^TC & BR^{-1}B^T \\ -C^T(I + DR^{-1}D^T)C & -(A + BR^{-1}D^TC) \end{array} \right].$$

Hence the \mathscr{H}_{∞} norm of G satisfies

$$||G_o||_{\infty} = \sup \{\xi > 0 | H_{\xi} \text{ has an eigenvalue}$$

on the imaginary axis}. (2)

This relation lays the basis of the well-established level set methods for computing \mathscr{H}_{∞} norm of finite dimensional systems (see, e.g. [2], for a quadratically converging algorithm).

In this talk, we extend the computation of \mathscr{H}_{∞} norm to the time-delay systems with the transfer function representation (1). The relation between the singular value of the transfer function and the corresponding Hamiltonian matrix remains valid. More precisely, let $\xi > 0$ be such that the matrix

$$D_{\xi} := D^T D - \xi^2 I$$

is non-singular. For $\omega \ge 0$, the matrix $G(j\omega)$ has a singular value equal to ξ if and only if $\lambda = j\omega$ is a solution of the equation

$$\det H_{\xi}(\lambda) = 0, \qquad (3)$$

Wim Michiels Department of Computer Science K. U. Leuven Celestijnenlaan 200A 3001 Heverlee Belgium Email: wim.michiels@cs.kuleuven.be

where

$$egin{aligned} H_{\xi}(\lambda) &:= \lambda I - M_0 & - & \sum\limits_{i=1}^m \left(M_i e^{-\lambda \, au_i} + M_{-i} e^{\lambda \, au_i}
ight) \ & - & \left(N_1 e^{-\lambda \, au_0} + N_{-1} e^{\lambda \, au_0}
ight) \end{aligned}$$

and M_0 , N_1 , N_{-1} , M_i , M_{-i} i = 1, ..., m depends on ξ and the system matrices in (1).

We show that the nonlinear eigenvalue problem (3) is equivalent to a linear eigenvalue problem of the infinite dimensional Hamiltonian operator \mathscr{L}_{ξ} on $X := \mathscr{C}([-\tau_{\max}, \tau_{\max}], \mathbb{C}^{2n})$ which is defined by

$$\begin{split} \mathscr{D}(\mathscr{L}_{\xi}) &= \left\{ \phi \in X : \ \phi' \in X, \ \phi'(0) = M_0 \phi(0) + \\ \sum_{i=1}^m (M_i \phi(-\tau_i) + M_{-i} \phi(\tau_i)) + N_1 \phi(-\tau_0) + N_{-1} \phi(\tau_0) \right\}, \\ \mathscr{L}_{\xi} \phi &= \phi'. \end{split}$$

Our approach to compute $||G||_{\infty}$ consists of two steps. In the first step inspired by (2), we compute using the method presented in [2],

 $\max\left\{\xi>0|\mathscr{L}^N_\xi \text{ has an eigenvalue on the imaginary axis}\right\}$

where \mathscr{L}_{ξ}^{N} is a matrix approximating \mathscr{L}_{ξ} . This problem can be interpreted as computing the \mathscr{H}_{∞} norm of an approximation of *G* under mild conditions.

In the second step, the approximated results are corrected using Newton iteration on a set of equations which are obtained from the nonlinear eigenvalue problem (3) and characterize the peaks in the singular value plot.

References

[1] S. Boyd, K. Balakrishnan, and P. Kabamba, "A bisection method for computing the \mathscr{H}_{∞} of a transfer matrix and related problems," Math Control Signals and Systems, 2(3), pp. 207-219, 1989.

[2] O. Bruinsma, and M. Steinbuch, "A fast algorithm to compute the \mathcal{H}_{∞} norm of a transfer function matrix," Systems and Control Letters, vol. 14, pp. 287-293, 1990.