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H∞ Norm of a System
H∞ Norm of a stable system G is defined as:

H∞ Norm is a robustness measure of the system

Therefore, H∞ Norm computation and H∞ Norm optimization 
are widely used in Robust Control
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Delays are positive, matrices with appropriate dimensions

Compute H∞ Norm of a stable time-delay system G:

Problem Definition
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[Byers'88] Singular values of G and eigenvalues of the

 Hamiltonian matrix H of G have the relation:

H∞ Norm computation: Finite Dimensional Case
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Example:
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Example:
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7

Example:

HH∞∞ Norm computation: Finite Dimensional Case Norm computation: Finite Dimensional Case
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The Connection for Time-Delay Systems
[Thm 2.1] Let ζ> 0 be such that the matrix

is non-singular. Singular values of G and eigenvalues of the

 Hamiltonian-like operator Lζ of G have the relation:
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where Lζ on is defined by 

The Connection for Time-Delay SystemsThe Connection for Time-Delay Systems

with 
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[Corollary]

The Connection for Time-Delay SystemsThe Connection for Time-Delay Systems
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Properties of Lζ
 infinite dimensional linear operator
has infinitely many eigenvalues, finite on imaginary axis
 eigenvalues are symmetric with respect to imaginary axis
 eigenvalues of the discretized linear operator can be used as 
an approximate result

The Connection for Time-Delay SystemsThe Connection for Time-Delay Systems



12

Correction step
correct the approximate results from the prediction step

Main Idea in a nutshell

Prediction step
Calculate the approximate H∞ norm as
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Discretizing the Linear Operator Lζ
Replace the continuous space X with the space XN of discrete 
functions

Let PNx, x in XN be the unique C2n valued interpolating 
polynomial of degree less than or equal to 2N satisfying
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The operator Lξ over X can be approximated with the matrix 
Lξ

N: XN     XN

Discretizing the Linear Operator Discretizing the Linear Operator LLξξ
NN  
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Using Lagrange represenation of Pnx:

These entries can be calculated beforehand.

Discretizing the Linear Operator Discretizing the Linear Operator LLξξ
NN  
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Discretizing the Linear Operator Discretizing the Linear Operator LLξξ
NN  
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The eigenvalue problem for Lξ
N can be written as a sparse 

generalized eigenvalue problem (large-scale methods)

 [Prop 2.1] symmetric eigenvalues with respect to the imaginary 
axis if

Discretizing the Linear Operator Discretizing the Linear Operator LLξξ
NN  
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We are interested in the imaginary axis eigenvalues of Lξ 

typically among the smallest eigenvalues)

A small value of N is sufficient in most practical problems for 
computing a good approximation of the H∞-norm for correction 
step

Discretizing the Linear Operator Discretizing the Linear Operator LLξξ
NN  
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Correcting the H∞ Norm
We want to correct the approximate results from prediction step.

Before that:

[Thm 4.1] Let ζ> 0 be such that the matrix

is non-singular. λ is an eigenvalue of Lζ
 if and only if 

where

Thm 2.1 Thm 4.1
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If 

Correcting the Correcting the HH∞∞ Norm Norm

then satisfies
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Correcting the Correcting the HH∞∞ Norm Norm

Since

Using the properties of hξ(jω),

Overdetermined system (4n+3 equations, 4n+2 unknowns)
 It can be solved least-square sense via optimization



22

Correction step
correct the approximate results from the prediction step

Main Idea in a nutshell

Prediction step
Calculate the approximate H∞ norm as
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Correction step

Main Idea in a nutshell

Prediction step
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Interpretating the Discretization of Lζ
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Let ζ> 0 be such that the matrix                                 is 
nonsingular. The matrix Lζ

N has an imaginary axis eigenvalue if 
and only if GN(jω) has a singular value equal to ξ where

Interpretating the Discretization of Interpretating the Discretization of LLξξ
NN

[Thm 5.1] Assume that
is symmetric. Let pN be the polynomial of the degree 2N+1 
satisfying the conditions,
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Interpretating the Discretization of Interpretating the Discretization of LLξξ
NN

 It guarantees that Lζ
N has imaginary axis eigenvalues for

No imaginary axis eigenvalues of Lζ
N for

Thus the supremum exists
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  First Algorithm for HFirst Algorithm for H∞∞ Norm Computation for TDS –  Norm Computation for TDS – Prediction StepPrediction Step
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  First Algorithm for HFirst Algorithm for H∞∞ Norm Computation for TDS –  Norm Computation for TDS – Correction StepCorrection Step

Determine all eigenvalues {jω(1),...,jω(p)} of Lζ
N on the positive 

imaginary axis, and the corresponding eigenvectors {x(1),...,x(p)}

 For all i=1,...,p solve

where

denote the solution with

Set
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  Second Algorithm for HSecond Algorithm for H∞∞ Norm Computation for TDS –  Norm Computation for TDS – Prediction StepPrediction Step
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  Second Algorithm for HSecond Algorithm for H∞∞ Norm Computation for TDS –  Norm Computation for TDS – Prediction StepPrediction Step



48

Second Algorithm for HSecond Algorithm for H∞∞ Norm Computation for TDS –  Norm Computation for TDS – Correction StepCorrection Step

The prediction step is quadratically convergent.

The correction step is same as in the first algorithm.
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Computation of GN is needed only for specific frequencies and 
requires solving generalized eigenvalue problem with matrix 
size 2N+1

The numerical method for computing H∞ norm can be used for 
computing L∞ norm of the time-delay system without any 
modification.

Remarks
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The definition of GN interprets:                     for

 
Note that the use of the well-known Pade approximation for the 
time- delay will cause numerically bad-scaled matrix in Lζ

N  due to 
the different magnitudes in the Pade coefficients. 

The Pade approximation depends on the time-delay and for 
multiple delays, each delay is approximated separately which will 
increase the Lζ

N dimension considerably. However, the term 
pN(t,λ) approximates multiple delays with a single term.

Remarks
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The time-delay system G has dimensions:

and delays

Example
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ExampleExample

Example
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ExampleExample

After Prediction Step
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ExampleExample

After Correction Step
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The connection between the singular values of time-delay 
systems and the eigenvalues of infinite dimensional operator Lζ 
is established

A numerically stable method to compute H∞ norm of time-delay 
system with arbitrary number of delays is given:

– H∞ norm prediction by discretization of the Lζ
N

– H∞ norm correction using the equations based on 
nonlinear eigenvalue problem

The algorithms are easily extendable to the systems with 
distributed delays

Concluding Remarks
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