Computing H_∞ Norms of Time-Delay Systems

Suat Gumussoy and Wim Michiels Department of Computer Science, K.U.Leuven

$\rm H_{\scriptscriptstyle \infty}$ Norm of a System

 H_{∞} Norm of a stable system G is defined as:

$$||G||_{\mathcal{H}_{\infty}} = \sup_{\omega \in \mathbb{R}} \sigma_1(G(j\omega))$$

- $\,{}^{\,\,}\text{H}_{\scriptscriptstyle\infty}$ Norm is a robustness measure of the system
- Therefore, H_∞ Norm computation and H_∞ Norm optimization are widely used in Robust Control

Problem Definition

Compute H_{∞} Norm of a stable time-delay system G:

$$G(s) = C\left(sI - A_0 - \sum_{i=1}^{m} A_i e^{-\tau_i s}\right)^{-1} B + D$$

Delays are positive, matrices with appropriate dimensions

H_∞ Norm computation: Finite Dimensional Case
 [Byers'88] Singular values of G and eigenvalues of the
 Hamiltonian matrix H of G have the relation:

$$\sigma_i(G(j\omega_0) = \xi \iff \det(j\omega_0 I - H_\xi) = 0$$

H_m Norm computation: Finite Dimensional Case

Example:

 $\sigma_i(G(j\omega_0) = \xi \iff \det(j\omega_0 I - H_\xi) = 0$

H_m Norm computation: Finite Dimensional Case

Example:

 $\sigma_i(G(j\omega_0) = \xi \iff \det(j\omega_0 I - H_{\xi}) = 0$

H_m Norm computation: Finite Dimensional Case

Example:

 $\sigma_i(G(j\omega_0) = \xi \iff \det(j\omega_0 I - H_{\xi}) = 0$

The Connection for Time-Delay Systems [Thm 2.1] Let $\zeta > 0$ be such that the matrix $D_{\xi} := D^T D - \xi^2 I$ is non-singular. Singular values of G and eigenvalues of the Hamiltonian-like operator L_{ζ} of G have the relation:

$$\sigma_i(G(j\omega_0) = \xi \iff L_{\xi}u = j\omega_0 \ u$$

The Connection for Time-Delay Systems

where
$$L_{\zeta}$$
 on $X := \mathcal{C}([-\tau_{\max}, \tau_{\max}], \mathbb{C}^{2n})$ is defined by
 $\mathcal{D}(\mathcal{L}_{\xi}) = \{\phi \in X : \phi' \in X, \}$

$$\phi'(0) = M_0 \phi(0) + \sum_{i=1}^m (M_i \phi(-\tau_i) + M_{-i} \phi(\tau_i)) \},$$
$$\mathcal{L}_{\xi} \phi = \phi', \ \phi \in \mathcal{D}(\mathcal{L}_{\xi})$$

with

$$M_{0} = \begin{bmatrix} A_{0} - BD_{\xi}^{-1}D^{T}C & -BD_{\xi}^{-1}B^{T} \\ \xi^{2}C^{T}D_{\xi}^{-T}C & -A_{0}^{T} + C^{T}DD_{\xi}^{-1}B^{T} \end{bmatrix},$$

$$M_{i} = \begin{bmatrix} A_{i} & 0 \\ 0 & 0 \end{bmatrix}, \quad M_{-i} = \begin{bmatrix} 0 & 0 \\ 0 & -A_{i}^{T} \end{bmatrix}, \quad 1 \le i \le N.$$

[Corollary]

 $||G||_{\mathcal{H}_{\infty}} = \sup\{\xi \in \mathbb{R}_{+} : \text{ operator } \mathcal{L}_{\xi} \text{ has an eigenvalue}$ on the imaginary axis}

Properties of L_z

- infinite dimensional linear operator
- has infinitely many eigenvalues, finite on imaginary axis
- eigenvalues are symmetric with respect to imaginary axis
- eigenvalues of the discretized linear operator can be used as an approximate result

 $||G||_{\mathcal{H}_{\infty}} \approx \sup\{\xi \in \mathbb{R}_{+} : \text{ matrix } \mathcal{L}_{\xi}^{N} \text{ has an eigenvalue} \\ \text{ on the imaginary axis} \}$

Main Idea in a nutshell

Prediction step Calculate the approximate H_{∞} norm as $\|G\|_{\mathcal{H}_{\infty}} \approx \sup\{\xi \in \mathbb{R}_{+} : \max \mathcal{L}_{\xi}^{N} \text{ has an eigenvalue}$ on the imaginary axis}

Correction step correct the approximate results from the prediction step

Discretizing the Linear Operator L_7

Replace the continuous space X with the space X_N of discrete $x = \begin{bmatrix} x_{-N} \\ \vdots \\ x_{0} \\ \vdots \\ x_{N} \end{bmatrix}$ functions

$$X := \mathcal{C}([-\tau_{\max}, \tau_{\max}], \mathbb{C}^{2n})$$

$$-\tau_{\max} \le \theta_{N,-N} < \ldots < \theta_{N,0} = 0 < \cdots < \theta_{N,N} \le \tau_{\max}$$

 $x_i = \phi(\theta_{N,i}) \in \mathbb{C}^{2n}, \quad i = -N, \dots, N$

Let $P_N x$, x in X_N be the unique C^{2n} valued interpolating polynomial of degree less than or equal to 2N satisfying

$$\mathcal{P}_N x(\theta_{N,i}) = x_i, \quad i = -N, \dots, N$$

The operator L_{ξ} over X can be approximated with the matrix L_{ξ}^{N} : $X_{N} \longrightarrow X_{N}$

$$\begin{pmatrix} \mathcal{L}_{\xi}^{N} x \end{pmatrix}_{i} = (\mathcal{P}_{N} x)' (\theta_{N,i}), \quad i = -N, \dots, -1,$$

$$\begin{pmatrix} \mathcal{L}_{\xi}^{N} x \end{pmatrix}_{0} = M_{0} \mathcal{P}_{N} x(0) + \sum_{i=1}^{m} (M_{i} \mathcal{P}_{N} x(-\tau_{i}) + M_{-i} \mathcal{P}_{N} x(\tau_{i}))$$

$$\begin{pmatrix} \mathcal{L}_{\xi}^{N} x \end{pmatrix}_{i} = (\mathcal{P}_{N} x)' (\theta_{N,i}), \quad i = 1, \dots, N.$$

$$\mathcal{D}(\mathcal{L}_{\xi}) = \{ \phi \in X : \phi' \in X, \phi'(0) = M_0 \phi(0) + \sum_{i=1}^m (M_i \phi(-\tau_i) + M_{-i} \phi(\tau_i)) \},$$
$$\mathcal{L}_{\xi} \phi = \phi', \phi \in \mathcal{D}(\mathcal{L}_{\xi})$$

Discretizing the Linear Operator L_{F}^{N}

Using Lagrange represention of $P_n x$: $\mathcal{P}_N x = \sum_{k=-N}^{N} l_{N,k} x_k$,

$$\mathcal{L}_{\xi}^{N} = \begin{bmatrix} d_{-N,-N} & \dots & d_{-N,N} \\ \vdots & & \vdots \\ d_{-1,-N} & \dots & d_{-1,N} \\ a_{-N} & \dots & a_{N} \\ d_{1,-N} & \dots & d_{1,N} \\ \vdots & & \vdots \\ d_{N,-N} & \dots & d_{N,N} \end{bmatrix} \in \mathbb{R}^{(2N+1)(2n) \times (2N+1)2n},$$

 $d_{i,k} = l'_{N,k}(\theta_{N,i})I, \text{ for } i,k \in \{-N,\ldots,-1,1,\ldots,N\}, i \neq 0$ $\mathcal{L}_{\xi}\phi = \phi', \phi \in \mathcal{D}(\mathcal{L}_{\xi})$

These entries can be calculated beforehand.

$$\mathcal{L}_{\xi}^{N} = \begin{bmatrix} d_{-N,-N} & \dots & d_{-N,N} \\ \vdots & & \vdots \\ d_{-1,-N} & \dots & d_{-1,N} \\ a_{-N} & \dots & a_{N} \\ d_{1,-N} & \dots & d_{1,N} \\ \vdots & & \vdots \\ d_{N,-N} & \dots & d_{N,N} \end{bmatrix} \in \mathbb{R}^{(2N+1)(2n) \times (2N+1)2n},$$

 $a_{0} = M_{0} l_{N,0}(0) + \sum_{k=1}^{m} (M_{k} l_{N,k}(-\tau_{k}) + M_{-k} l_{N,k}(\tau_{k}))$ $a_{k} = \sum_{k=1}^{m} (M_{k} l_{N,k}(-\tau_{k}) + M_{-k} l_{N,k}(\tau_{k})), \quad k \in \{-N, \dots, N\}, \quad k \neq 0.$

$$\mathcal{D}(\mathcal{L}_{\xi}) = \{ \phi \in X : \phi' \in X, \phi'(0) = M_0 \phi(0) + \sum_{i=1}^m (M_i \phi(-\tau_i) + M_{-i} \phi(\tau_i)) \},\$$

- The eigenvalue problem for L_{ξ}^{N} can be written as a sparse generalized eigenvalue problem (large-scale methods)
- [Prop 2.1] symmetric eigenvalues with respect to the imaginary axis if

$$\theta_{N,-i} = -\theta_{N,i}, \ i = 1, \dots, N,$$

• We are interested in the imaginary axis eigenvalues of L_{ξ} typically among the smallest eigenvalues)

$$\sigma_i(G(j\omega_0) = \xi \iff \det(j\omega_0 I - L_{\xi}) = 0$$

• A small value of N is sufficient in most practical problems for computing a good approximation of the H_{∞} -norm for correction step

$$\sigma_i(G(j\omega_0) = \xi \iff \det(j\hat{\omega}_0 I - L^N_{\xi}) = 0$$

Correcting the $\mathrm{H}_{\mathrm{\infty}}\,\mathrm{Norm}$

We want to correct the approximate results from prediction step. Before that:

[Thm 4.1] Let $\zeta > 0$ be such that the matrix $D_{\xi} := D^T D - \xi^2 I$ is non-singular. λ is an eigenvalue of L_{ζ} if and only if $h_{\xi}(\lambda) := \det H_{\xi}(\lambda) = 0$ where

$$H_{\xi}(\lambda) := \lambda I - M_0 - \sum_{i=1}^m \left(M_i e^{-\lambda \tau_i} + M_{-i} e^{\lambda \tau_i} \right)$$

$$\begin{array}{c|c} \sigma_i(G(j\omega_0) = \xi \iff L_{\xi}u = j\omega_0 u \iff \det H_{\xi}(j\omega_0) \\ \hline \text{Thm 2.1} & \text{Thm 4.1} \end{array}$$

Correcting the H_m Norm

1.5

2

Since
$$h_{\xi}(j\omega) = 0$$
, $h'_{\xi}(j\omega) = 0$

Using the properties of $h_{\xi}(j\omega)$,

$$\begin{cases} H(j\omega, \xi) \begin{bmatrix} u, \\ v \end{bmatrix} = 0, \quad n(u,v) = 0\\ \Im \left\{ v^* \left(I + \sum_{i=1}^p A_i \tau_i e^{-j\omega\tau_i} \right) u \right\} = 0 \end{cases}$$

Overdetermined system (4n+3 equations, 4n+2 unknowns)
It can be solved least-square sense via optimization

Main Idea in a nutshell

Prediction step Calculate the approximate H_{∞} norm as $\|G\|_{\mathcal{H}_{\infty}} \approx \sup\{\xi \in \mathbb{R}_{+} : \max \mathcal{L}_{\xi}^{N} \text{ has an eigenvalue}$ on the imaginary axis}

Correction step correct the approximate results from the prediction step

Main Idea in a nutshell

Prediction step For fixed N, determine $\sup\{\xi \in \mathbb{R}_+ : \max \mathcal{L}_{\xi}^N \text{ has an eigenvalue on the imaginary axis}\}$ and determine the corresponding eigenvalues on the imaginary axis

Correction step

Correct the results by solving the equations

$$\begin{cases} H(j\omega, \xi) \begin{bmatrix} u, \\ v \end{bmatrix} = 0, \quad n(u,v) = 0\\ \Im \left\{ v^* \left(I + \sum_{i=1}^p A_i \tau_i e^{-j\omega\tau_i} \right) u \right\} = 0 \end{cases}$$

Interpretating the Discretization of L_{z}

$$\sigma_i(G(j\omega_0) = \xi \iff \det(j\hat{\omega}_0 I - L_{\xi}^N) = 0$$

$\sigma_i(?) = \xi \iff \det(j\hat{\omega}_0 I - L^N_{\xi}) = 0$

[Thm 5.1] Assume that $-\tau_{\max} \le \theta_{N,-N} < \ldots < \theta_{N,0} = 0 < \cdots < \theta_{N,N} \le \tau_{\max}$ is symmetric. Let p_N be the polynomial of the degree 2N+1 satisfying the conditions,

$$p_N(0; \lambda) = 1,$$

$$p'_N(\theta_i; \lambda) = \lambda p_N(\theta_i; \lambda), \ i = -N, \dots, -1, 1, \dots, N.$$

Let $\zeta > 0$ be such that the matrix $D_{\xi} := D^T D - \xi^2 I$ is nonsingular. The matrix L_{ζ}^{N} has an imaginary axis eigenvalue if and only if $G_{N}(j\omega)$ has a singular value equal to ξ where

$$G_N(j\omega) = C\left(j\omega I - A_0 - \sum_{i=1}^m A_i p_N(-\tau_i; j\omega)\right)^{-1} B + D.$$

$$\sigma_i(G_N(j\omega_0) = \xi \iff \det(j\omega_0 I - L^N_{\xi}) = 0$$

• It guarantees that L_{ζ}^{N} has imaginary axis eigenvalues for $\xi \in [\sigma_1(D), \ \|G_N(j\omega)\|_{\mathcal{H}_{\infty}}]$

- No imaginary axis eigenvalues of L^N_{\zeta} for $\xi > \|G_N(j\omega)\|_{\mathcal{H}_\infty}$

Thus the supremum exists

 $\sup\{\xi \in \mathbb{R}_+ : \text{ matrix } \mathcal{L}^N_{\xi} \text{ has an eigenvalue on the imaginary axis}\}$

 $\xi_l := \max\left\{\sigma_1(G(0)), \sigma_1(D), \operatorname{tol}\right\}, \ \xi_h = \infty$

• Determine all eigenvalues $\{j\omega^{(1)},...,j\omega^{(p)}\}\$ of L_{ζ}^{N} on the positive imaginary axis, and the corresponding eigenvectors $\{x^{(1)},...,x^{(p)}\}\$

• For all i=1,...,p solve

$$\begin{cases}
H(j\omega, \xi) \begin{bmatrix} u, \\ v \end{bmatrix} = 0, \quad n(u,v) = 0 \\
\Im \left\{ v^* \left(I + \sum_{i=1}^p A_i \tau_i e^{-j\omega\tau_i} \right) u \right\} = 0
\end{cases}$$

where

$$\begin{bmatrix} u \\ v \end{bmatrix} = x_0^{(i)}, \ \omega = \omega^{(i)}, \ \xi = \xi_l. \\ (\tilde{u}^{(i)}, \tilde{v}^{(i)}, \tilde{\omega}^{(i)}, \tilde{\xi}^{(i)})$$

denote the solution with

• Set
$$||G(j\omega)||_{\mathcal{H}_{\infty}} := \max_{1 \le i \le p} \tilde{\xi}^{(i)}$$
.

frequency

- The prediction step is quadratically convergent.
- The correction step is same as in the first algorithm.

Remarks

- Computation of G_N is needed only for <u>specific</u> frequencies and requires solving generalized eigenvalue problem with matrix size 2N+1
- The numerical method for computing H_{∞} norm can be used for computing L_{∞} norm of the time-delay system without any modification.

Remarks

• The definition of G_N interprets: $p_N(t,\lambda) \approx e^{\lambda t}$ for $t \in [-\tau_{\max}, \tau_{\max}]$

$$G_N(j\omega) = C\left(j\omega I - A_0 - \sum_{i=1}^m A_i p_N(-\tau_i; j\omega)\right)^{-1} B + D$$

- Note that the use of the well-known Pade approximation for the time- delay will cause numerically bad-scaled matrix in L^N_ζ due to the different magnitudes in the Pade coefficients.
- The Pade approximation depends on the time-delay and for multiple delays, each delay is approximated separately which will increase the L^N_ζ dimension considerably. However, the term p_N(t,λ) approximates multiple delays with a single term.

Example

The time-delay system G has dimensions:

$$G(s) = C^{4 \times 10} \left(sI - A_0^{10 \times 10} - \sum_{i=1}^7 A_i^{10 \times 10} e^{-\tau_i s} \right)^{-1} B^{10 \times 2} + D^{4 \times 2}$$

and delays

 $\tau_1 = 0.1, \, \tau_2 = 0.2, \, \tau_3 = 0.3, \, \tau_4 = 0.4, \, \tau_5 = 0.5, \, \tau_6 = 0.6, \, \tau_7 = 0.8.$

Example

Example

After Prediction Step

After Correction Step

Concluding Remarks

- \protect The connection between the singular values of time-delay systems and the eigenvalues of infinite dimensional operator L_{χ} is established
- A numerically stable method to compute H_∞ norm of time-delay system with arbitrary number of delays is given:
 - H_{∞} norm <u>prediction</u> by discretization of the L_{τ}^{N}
 - $\rm H_{\infty}$ norm correction using the equations based on nonlinear eigenvalue problem
- The algorithms are easily extendable to the systems with distributed delays